

Ocean University of China

中国海洋大学

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

Sea Surface Temperature, SST

SST Dependence of Ocean Surface Winds from Scatterometers

Zhixiong Wang	Ocean University of China, China		
Ad Stoffelen	Royal Netherlands Meteorological Institute		
Anton Verhoef	Royal Netherlands Meteorological Institute		
Jur Vogelzang	Royal Netherlands Meteorological Institute		
Jos Kloe de	Royal Netherlands Meteorological Institute		
Jeroen Verspeek	Royal Netherlands Meteorological Institute		
Franco Fois	Delft University of Technology		
Mingsen Lin	National Satellite Ocean Application Service, China		
Chaofang Zhao	Ocean University of China, China		
Ge Chen	Ocean University of China, China		

1. SST Dependence of Ku- and C-Band Backscatter Measurements, IEEE JSTARS

- 2. Ku-band Scatterometer SST Sensitivity and Geophysical Model Function, IGARSS 2016
- 3. A SST-dependent Ku-band Geophysical Model Function for RapidScat, JGR: Oceans

RapidScat

Ku-band (2.24 cm)

Orbit: 52N~52S

Mounted on International Space Station

ASCAT

C-band (5.74 cm)

Orbit: Global sampling

Mounted on Metop-A/B

Currently, the GMFs are modeled without SST parameter, and will be named as Wind-only GMFs, e.g. CMOD5, NSCAT-4.

1. Indications of SST Dependence

Collocated ASCAT and RapidScat Data

- × Integrated rain effects?
- × Sea state?
- × Wind speed PDF diff.?
- ✓ High correlation!
- ✓ SST effect!

2. Physics-based Radar Backscatter Model

Consists of two parts:

- A sea wave spectrum for the description of the ocean surface topography; Kudryavtsev spectrum can provide a reasonable shape of ...
 Ocean surface topography
- An analytical approximate model which can provide theoretical simulations of radar back Radar system

The ocean topography results from a balance equation, in which the energy source Q is:

Kudryavtsev curvature spectrum

C-band (ASCAT)

Ku-band (RapidScat)

- The SST effects are stronger at Ku-band than C-band;
- > The higher the incidence angle, the larger the effect of SST on radar backscatter;
- The SST effects differ by wind speed;
- For Ku-band, the SST-effects are different for different polarizations, where larger effects are expected in VV than in HH polarization

3. Derivation of SST Dependence

- > Assuming that the SST effects are the same for all wind directions;
- For fixed incidence angle;

$$\sigma_p^0(V,T) = \sigma_p^0(V,T_0) * y_p(V,T-T_0)$$
(3)
We are SST dependencies ~_^
$$y_p(V,T-T_0) = 1 + B_{1p}(V) * (T-T_0) + B_{2p}(V) * (T-T_0)^2$$
(3.1)

- ✓ The variation of σ^0 due to SST is approximated as a 2nd Taylor expansion;
- \checkmark T_0 is a reference temperature that can be chosen at convenience;

(3.1)

4. Validation of SST Correction

Fig. Wind speed biases (RapidScat - ASCAT) as a function of SST and V.

No SST Correction.

After SST Correction.

Fig. Wind inversion residues $\sigma_{Obs}^0 / \sigma_{Sim}^0$ as a function of SST in different wind ranges.

5. Outlooks

Atmospheric Attenuation

20

Fig. 3

The Unique Added Value of Collocated ASCAT and ScatSat Measurements

Table I. Scatteron	neters' Antenn	I am a new one.		
Items	ASCAT-A/B	RapidScat	QuikSCAT	ScatSat
Radar Wavelength	5.74 cm	2.24 cm	2.24 cm	2.22 cm
Radar Polarization	VV	VV and HH	VV and HH	VV and HH
Incidence Angle	27.5~63.80	55.2±3.0°(VV)	$54.1 \pm 0.2^{\circ} (VV)$	49.4 ⁰ (VV)
		48.8±3.0 ⁰ (HH)	46.3±0.2 ⁰ (HH)	42.6 ⁰ (HH)
Local Time of Ascending Node	21:26	changing	06:00	21:30

✓ A large number of collocations for ASCAT and ScatSat is generated now.

✓ More accurate SST correction, and extend it to all the Ku-band scatterometers (QuikSCAT, OSCAT, HY2/SCAT, ScatSat).

Thanks for your attention.

Extra slides

Sea Surface Tension for sea water

 $k \mathsf{ rad/m}$

Kudryavtsev sea spectrum SST = 15°C

Fig. Absolute σ^0 as a function of SST for wind speed in range of 5.5 – 6.0 m/s.

Based on collocated ASCAT & RapidScat measurements